3.1501 \(\int \frac{x^2}{1+x^8} \, dx\)

Optimal. Leaf size=339 \[ \frac{\log \left (x^2-\sqrt{2-\sqrt{2}} x+1\right )}{8 \sqrt{2 \left (2-\sqrt{2}\right )}}-\frac{\log \left (x^2+\sqrt{2-\sqrt{2}} x+1\right )}{8 \sqrt{2 \left (2-\sqrt{2}\right )}}-\frac{\log \left (x^2-\sqrt{2+\sqrt{2}} x+1\right )}{8 \sqrt{2 \left (2+\sqrt{2}\right )}}+\frac{\log \left (x^2+\sqrt{2+\sqrt{2}} x+1\right )}{8 \sqrt{2 \left (2+\sqrt{2}\right )}}+\frac{1}{8} \sqrt{2-\sqrt{2}} \tan ^{-1}\left (\frac{\sqrt{2-\sqrt{2}}-2 x}{\sqrt{2+\sqrt{2}}}\right )-\frac{1}{8} \sqrt{2+\sqrt{2}} \tan ^{-1}\left (\frac{\sqrt{2+\sqrt{2}}-2 x}{\sqrt{2-\sqrt{2}}}\right )-\frac{1}{8} \sqrt{2-\sqrt{2}} \tan ^{-1}\left (\frac{2 x+\sqrt{2-\sqrt{2}}}{\sqrt{2+\sqrt{2}}}\right )+\frac{1}{8} \sqrt{2+\sqrt{2}} \tan ^{-1}\left (\frac{2 x+\sqrt{2+\sqrt{2}}}{\sqrt{2-\sqrt{2}}}\right ) \]

[Out]

(Sqrt[2 - Sqrt[2]]*ArcTan[(Sqrt[2 - Sqrt[2]] - 2*x)/Sqrt[2 + Sqrt[2]]])/8 - (Sqr
t[2 + Sqrt[2]]*ArcTan[(Sqrt[2 + Sqrt[2]] - 2*x)/Sqrt[2 - Sqrt[2]]])/8 - (Sqrt[2
- Sqrt[2]]*ArcTan[(Sqrt[2 - Sqrt[2]] + 2*x)/Sqrt[2 + Sqrt[2]]])/8 + (Sqrt[2 + Sq
rt[2]]*ArcTan[(Sqrt[2 + Sqrt[2]] + 2*x)/Sqrt[2 - Sqrt[2]]])/8 + Log[1 - Sqrt[2 -
 Sqrt[2]]*x + x^2]/(8*Sqrt[2*(2 - Sqrt[2])]) - Log[1 + Sqrt[2 - Sqrt[2]]*x + x^2
]/(8*Sqrt[2*(2 - Sqrt[2])]) - Log[1 - Sqrt[2 + Sqrt[2]]*x + x^2]/(8*Sqrt[2*(2 +
Sqrt[2])]) + Log[1 + Sqrt[2 + Sqrt[2]]*x + x^2]/(8*Sqrt[2*(2 + Sqrt[2])])

_______________________________________________________________________________________

Rubi [A]  time = 0.555612, antiderivative size = 339, normalized size of antiderivative = 1., number of steps used = 19, number of rules used = 6, integrand size = 11, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.546 \[ \frac{\log \left (x^2-\sqrt{2-\sqrt{2}} x+1\right )}{8 \sqrt{2 \left (2-\sqrt{2}\right )}}-\frac{\log \left (x^2+\sqrt{2-\sqrt{2}} x+1\right )}{8 \sqrt{2 \left (2-\sqrt{2}\right )}}-\frac{\log \left (x^2-\sqrt{2+\sqrt{2}} x+1\right )}{8 \sqrt{2 \left (2+\sqrt{2}\right )}}+\frac{\log \left (x^2+\sqrt{2+\sqrt{2}} x+1\right )}{8 \sqrt{2 \left (2+\sqrt{2}\right )}}+\frac{1}{8} \sqrt{2-\sqrt{2}} \tan ^{-1}\left (\frac{\sqrt{2-\sqrt{2}}-2 x}{\sqrt{2+\sqrt{2}}}\right )-\frac{1}{8} \sqrt{2+\sqrt{2}} \tan ^{-1}\left (\frac{\sqrt{2+\sqrt{2}}-2 x}{\sqrt{2-\sqrt{2}}}\right )-\frac{1}{8} \sqrt{2-\sqrt{2}} \tan ^{-1}\left (\frac{2 x+\sqrt{2-\sqrt{2}}}{\sqrt{2+\sqrt{2}}}\right )+\frac{1}{8} \sqrt{2+\sqrt{2}} \tan ^{-1}\left (\frac{2 x+\sqrt{2+\sqrt{2}}}{\sqrt{2-\sqrt{2}}}\right ) \]

Antiderivative was successfully verified.

[In]  Int[x^2/(1 + x^8),x]

[Out]

(Sqrt[2 - Sqrt[2]]*ArcTan[(Sqrt[2 - Sqrt[2]] - 2*x)/Sqrt[2 + Sqrt[2]]])/8 - (Sqr
t[2 + Sqrt[2]]*ArcTan[(Sqrt[2 + Sqrt[2]] - 2*x)/Sqrt[2 - Sqrt[2]]])/8 - (Sqrt[2
- Sqrt[2]]*ArcTan[(Sqrt[2 - Sqrt[2]] + 2*x)/Sqrt[2 + Sqrt[2]]])/8 + (Sqrt[2 + Sq
rt[2]]*ArcTan[(Sqrt[2 + Sqrt[2]] + 2*x)/Sqrt[2 - Sqrt[2]]])/8 + Log[1 - Sqrt[2 -
 Sqrt[2]]*x + x^2]/(8*Sqrt[2*(2 - Sqrt[2])]) - Log[1 + Sqrt[2 - Sqrt[2]]*x + x^2
]/(8*Sqrt[2*(2 - Sqrt[2])]) - Log[1 - Sqrt[2 + Sqrt[2]]*x + x^2]/(8*Sqrt[2*(2 +
Sqrt[2])]) + Log[1 + Sqrt[2 + Sqrt[2]]*x + x^2]/(8*Sqrt[2*(2 + Sqrt[2])])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 37.5607, size = 311, normalized size = 0.92 \[ \frac{\sqrt{2} \log{\left (x^{2} - x \sqrt{- \sqrt{2} + 2} + 1 \right )}}{16 \sqrt{- \sqrt{2} + 2}} - \frac{\sqrt{2} \log{\left (x^{2} + x \sqrt{- \sqrt{2} + 2} + 1 \right )}}{16 \sqrt{- \sqrt{2} + 2}} - \frac{\sqrt{2} \log{\left (x^{2} - x \sqrt{\sqrt{2} + 2} + 1 \right )}}{16 \sqrt{\sqrt{2} + 2}} + \frac{\sqrt{2} \log{\left (x^{2} + x \sqrt{\sqrt{2} + 2} + 1 \right )}}{16 \sqrt{\sqrt{2} + 2}} + \frac{\sqrt{2} \operatorname{atan}{\left (\frac{2 x - \sqrt{\sqrt{2} + 2}}{\sqrt{- \sqrt{2} + 2}} \right )}}{8 \sqrt{- \sqrt{2} + 2}} + \frac{\sqrt{2} \operatorname{atan}{\left (\frac{2 x + \sqrt{\sqrt{2} + 2}}{\sqrt{- \sqrt{2} + 2}} \right )}}{8 \sqrt{- \sqrt{2} + 2}} - \frac{\sqrt{2} \operatorname{atan}{\left (\frac{2 x - \sqrt{- \sqrt{2} + 2}}{\sqrt{\sqrt{2} + 2}} \right )}}{8 \sqrt{\sqrt{2} + 2}} - \frac{\sqrt{2} \operatorname{atan}{\left (\frac{2 x + \sqrt{- \sqrt{2} + 2}}{\sqrt{\sqrt{2} + 2}} \right )}}{8 \sqrt{\sqrt{2} + 2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(x**2/(x**8+1),x)

[Out]

sqrt(2)*log(x**2 - x*sqrt(-sqrt(2) + 2) + 1)/(16*sqrt(-sqrt(2) + 2)) - sqrt(2)*l
og(x**2 + x*sqrt(-sqrt(2) + 2) + 1)/(16*sqrt(-sqrt(2) + 2)) - sqrt(2)*log(x**2 -
 x*sqrt(sqrt(2) + 2) + 1)/(16*sqrt(sqrt(2) + 2)) + sqrt(2)*log(x**2 + x*sqrt(sqr
t(2) + 2) + 1)/(16*sqrt(sqrt(2) + 2)) + sqrt(2)*atan((2*x - sqrt(sqrt(2) + 2))/s
qrt(-sqrt(2) + 2))/(8*sqrt(-sqrt(2) + 2)) + sqrt(2)*atan((2*x + sqrt(sqrt(2) + 2
))/sqrt(-sqrt(2) + 2))/(8*sqrt(-sqrt(2) + 2)) - sqrt(2)*atan((2*x - sqrt(-sqrt(2
) + 2))/sqrt(sqrt(2) + 2))/(8*sqrt(sqrt(2) + 2)) - sqrt(2)*atan((2*x + sqrt(-sqr
t(2) + 2))/sqrt(sqrt(2) + 2))/(8*sqrt(sqrt(2) + 2))

_______________________________________________________________________________________

Mathematica [A]  time = 0.00963405, size = 209, normalized size = 0.62 \[ \frac{1}{8} \cos \left (\frac{\pi }{8}\right ) \log \left (x^2-2 x \sin \left (\frac{\pi }{8}\right )+1\right )-\frac{1}{8} \cos \left (\frac{\pi }{8}\right ) \log \left (x^2+2 x \sin \left (\frac{\pi }{8}\right )+1\right )-\frac{1}{8} \sin \left (\frac{\pi }{8}\right ) \log \left (x^2-2 x \cos \left (\frac{\pi }{8}\right )+1\right )+\frac{1}{8} \sin \left (\frac{\pi }{8}\right ) \log \left (x^2+2 x \cos \left (\frac{\pi }{8}\right )+1\right )+\frac{1}{4} \cos \left (\frac{\pi }{8}\right ) \tan ^{-1}\left (\csc \left (\frac{\pi }{8}\right ) \left (x-\cos \left (\frac{\pi }{8}\right )\right )\right )+\frac{1}{4} \cos \left (\frac{\pi }{8}\right ) \tan ^{-1}\left (\csc \left (\frac{\pi }{8}\right ) \left (x+\cos \left (\frac{\pi }{8}\right )\right )\right )-\frac{1}{4} \sin \left (\frac{\pi }{8}\right ) \tan ^{-1}\left (\sec \left (\frac{\pi }{8}\right ) \left (x-\sin \left (\frac{\pi }{8}\right )\right )\right )-\frac{1}{4} \sin \left (\frac{\pi }{8}\right ) \tan ^{-1}\left (\sec \left (\frac{\pi }{8}\right ) \left (x+\sin \left (\frac{\pi }{8}\right )\right )\right ) \]

Antiderivative was successfully verified.

[In]  Integrate[x^2/(1 + x^8),x]

[Out]

(ArcTan[(x - Cos[Pi/8])*Csc[Pi/8]]*Cos[Pi/8])/4 + (ArcTan[(x + Cos[Pi/8])*Csc[Pi
/8]]*Cos[Pi/8])/4 + (Cos[Pi/8]*Log[1 + x^2 - 2*x*Sin[Pi/8]])/8 - (Cos[Pi/8]*Log[
1 + x^2 + 2*x*Sin[Pi/8]])/8 - (ArcTan[Sec[Pi/8]*(x - Sin[Pi/8])]*Sin[Pi/8])/4 -
(ArcTan[Sec[Pi/8]*(x + Sin[Pi/8])]*Sin[Pi/8])/4 - (Log[1 + x^2 - 2*x*Cos[Pi/8]]*
Sin[Pi/8])/8 + (Log[1 + x^2 + 2*x*Cos[Pi/8]]*Sin[Pi/8])/8

_______________________________________________________________________________________

Maple [C]  time = 0.004, size = 22, normalized size = 0.1 \[{\frac{1}{8}\sum _{{\it \_R}={\it RootOf} \left ({{\it \_Z}}^{8}+1 \right ) }{\frac{\ln \left ( x-{\it \_R} \right ) }{{{\it \_R}}^{5}}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(x^2/(x^8+1),x)

[Out]

1/8*sum(1/_R^5*ln(x-_R),_R=RootOf(_Z^8+1))

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{x^{2}}{x^{8} + 1}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^2/(x^8 + 1),x, algorithm="maxima")

[Out]

integrate(x^2/(x^8 + 1), x)

_______________________________________________________________________________________

Fricas [A]  time = 0.251326, size = 3343, normalized size = 9.86 \[ \text{result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^2/(x^8 + 1),x, algorithm="fricas")

[Out]

-1/64*sqrt(2)*(4*(sqrt(sqrt(2) + 2) - sqrt(-sqrt(2) + 2))*arctan(-((sqrt(2) + 2)
^(3/2) + 3*sqrt(sqrt(2) + 2)*(sqrt(2) - 2) + 3*(sqrt(2) + 2)*sqrt(-sqrt(2) + 2)
- (-sqrt(2) + 2)^(3/2))/(8*sqrt(2)*x + (sqrt(2) + 2)^(3/2) + 3*sqrt(sqrt(2) + 2)
*(sqrt(2) - 2) - 3*(sqrt(2) + 2)*sqrt(-sqrt(2) + 2) + (-sqrt(2) + 2)^(3/2) + sqr
t(2)*sqrt(8*sqrt(2)*x*(sqrt(2) + 2)^(3/2) + (sqrt(2) + 2)^3 + 3*(sqrt(2) + 2)*(s
qrt(2) - 2)^2 - (sqrt(2) - 2)^3 - 24*sqrt(2)*x*(sqrt(2) + 2)*sqrt(-sqrt(2) + 2)
+ 8*sqrt(2)*x*(-sqrt(2) + 2)^(3/2) + 64*x^2 + 3*(8*sqrt(2)*x*sqrt(sqrt(2) + 2) -
 (sqrt(2) + 2)^2)*(sqrt(2) - 2)))) + 4*(sqrt(sqrt(2) + 2) - sqrt(-sqrt(2) + 2))*
arctan(-((sqrt(2) + 2)^(3/2) + 3*sqrt(sqrt(2) + 2)*(sqrt(2) - 2) + 3*(sqrt(2) +
2)*sqrt(-sqrt(2) + 2) - (-sqrt(2) + 2)^(3/2))/(8*sqrt(2)*x - (sqrt(2) + 2)^(3/2)
 - 3*sqrt(sqrt(2) + 2)*(sqrt(2) - 2) + 3*(sqrt(2) + 2)*sqrt(-sqrt(2) + 2) - (-sq
rt(2) + 2)^(3/2) + 8*sqrt(2)*sqrt(-1/8*sqrt(2)*x*(sqrt(2) + 2)^(3/2) + 1/64*(sqr
t(2) + 2)^3 + 3/64*(sqrt(2) + 2)*(sqrt(2) - 2)^2 - 1/64*(sqrt(2) - 2)^3 + 3/8*sq
rt(2)*x*(sqrt(2) + 2)*sqrt(-sqrt(2) + 2) - 1/8*sqrt(2)*x*(-sqrt(2) + 2)^(3/2) +
x^2 - 3/64*(8*sqrt(2)*x*sqrt(sqrt(2) + 2) + (sqrt(2) + 2)^2)*(sqrt(2) - 2)))) -
4*(sqrt(sqrt(2) + 2) + sqrt(-sqrt(2) + 2))*arctan(((sqrt(2) + 2)^(3/2) + 3*sqrt(
sqrt(2) + 2)*(sqrt(2) - 2) - 3*(sqrt(2) + 2)*sqrt(-sqrt(2) + 2) + (-sqrt(2) + 2)
^(3/2))/(8*sqrt(2)*x + (sqrt(2) + 2)^(3/2) + 3*sqrt(sqrt(2) + 2)*(sqrt(2) - 2) +
 3*(sqrt(2) + 2)*sqrt(-sqrt(2) + 2) - (-sqrt(2) + 2)^(3/2) + sqrt(2)*sqrt(8*sqrt
(2)*x*(sqrt(2) + 2)^(3/2) + (sqrt(2) + 2)^3 + 3*(sqrt(2) + 2)*(sqrt(2) - 2)^2 -
(sqrt(2) - 2)^3 + 24*sqrt(2)*x*(sqrt(2) + 2)*sqrt(-sqrt(2) + 2) - 8*sqrt(2)*x*(-
sqrt(2) + 2)^(3/2) + 64*x^2 + 3*(8*sqrt(2)*x*sqrt(sqrt(2) + 2) - (sqrt(2) + 2)^2
)*(sqrt(2) - 2)))) - 4*(sqrt(sqrt(2) + 2) + sqrt(-sqrt(2) + 2))*arctan(((sqrt(2)
 + 2)^(3/2) + 3*sqrt(sqrt(2) + 2)*(sqrt(2) - 2) - 3*(sqrt(2) + 2)*sqrt(-sqrt(2)
+ 2) + (-sqrt(2) + 2)^(3/2))/(8*sqrt(2)*x - (sqrt(2) + 2)^(3/2) - 3*sqrt(sqrt(2)
 + 2)*(sqrt(2) - 2) - 3*(sqrt(2) + 2)*sqrt(-sqrt(2) + 2) + (-sqrt(2) + 2)^(3/2)
+ 8*sqrt(2)*sqrt(-1/8*sqrt(2)*x*(sqrt(2) + 2)^(3/2) + 1/64*(sqrt(2) + 2)^3 + 3/6
4*(sqrt(2) + 2)*(sqrt(2) - 2)^2 - 1/64*(sqrt(2) - 2)^3 - 3/8*sqrt(2)*x*(sqrt(2)
+ 2)*sqrt(-sqrt(2) + 2) + 1/8*sqrt(2)*x*(-sqrt(2) + 2)^(3/2) + x^2 - 3/64*(8*sqr
t(2)*x*sqrt(sqrt(2) + 2) + (sqrt(2) + 2)^2)*(sqrt(2) - 2)))) - 4*sqrt(2)*sqrt(sq
rt(2) + 2)*arctan(-((sqrt(2) + 2)^(3/2) + 3*sqrt(sqrt(2) + 2)*(sqrt(2) - 2))/(3*
(sqrt(2) + 2)*sqrt(-sqrt(2) + 2) - (-sqrt(2) + 2)^(3/2) + 8*x + sqrt((sqrt(2) +
2)^3 - 3*(sqrt(2) + 2)^2*(sqrt(2) - 2) + 3*(sqrt(2) + 2)*(sqrt(2) - 2)^2 - (sqrt
(2) - 2)^3 + 48*x*(sqrt(2) + 2)*sqrt(-sqrt(2) + 2) - 16*x*(-sqrt(2) + 2)^(3/2) +
 64*x^2))) - 4*sqrt(2)*sqrt(sqrt(2) + 2)*arctan(((sqrt(2) + 2)^(3/2) + 3*sqrt(sq
rt(2) + 2)*(sqrt(2) - 2))/(3*(sqrt(2) + 2)*sqrt(-sqrt(2) + 2) - (-sqrt(2) + 2)^(
3/2) - 8*x - sqrt((sqrt(2) + 2)^3 - 3*(sqrt(2) + 2)^2*(sqrt(2) - 2) + 3*(sqrt(2)
 + 2)*(sqrt(2) - 2)^2 - (sqrt(2) - 2)^3 - 48*x*(sqrt(2) + 2)*sqrt(-sqrt(2) + 2)
+ 16*x*(-sqrt(2) + 2)^(3/2) + 64*x^2))) + 4*sqrt(2)*sqrt(-sqrt(2) + 2)*arctan(-(
3*(sqrt(2) + 2)*sqrt(-sqrt(2) + 2) - (-sqrt(2) + 2)^(3/2))/((sqrt(2) + 2)^(3/2)
+ 3*sqrt(sqrt(2) + 2)*(sqrt(2) - 2) + 8*x + sqrt((sqrt(2) + 2)^3 + 3*(sqrt(2) +
2)*(sqrt(2) - 2)^2 - (sqrt(2) - 2)^3 + 16*x*(sqrt(2) + 2)^(3/2) + 64*x^2 - 3*((s
qrt(2) + 2)^2 - 16*x*sqrt(sqrt(2) + 2))*(sqrt(2) - 2)))) + 4*sqrt(2)*sqrt(-sqrt(
2) + 2)*arctan((3*(sqrt(2) + 2)*sqrt(-sqrt(2) + 2) - (-sqrt(2) + 2)^(3/2))/((sqr
t(2) + 2)^(3/2) + 3*sqrt(sqrt(2) + 2)*(sqrt(2) - 2) - 8*x - sqrt((sqrt(2) + 2)^3
 + 3*(sqrt(2) + 2)*(sqrt(2) - 2)^2 - (sqrt(2) - 2)^3 - 16*x*(sqrt(2) + 2)^(3/2)
+ 64*x^2 - 3*((sqrt(2) + 2)^2 + 16*x*sqrt(sqrt(2) + 2))*(sqrt(2) - 2)))) - (sqrt
(sqrt(2) + 2) - sqrt(-sqrt(2) + 2))*log(1/8*sqrt(2)*x*(sqrt(2) + 2)^(3/2) + 1/64
*(sqrt(2) + 2)^3 + 3/64*(sqrt(2) + 2)*(sqrt(2) - 2)^2 - 1/64*(sqrt(2) - 2)^3 + 3
/8*sqrt(2)*x*(sqrt(2) + 2)*sqrt(-sqrt(2) + 2) - 1/8*sqrt(2)*x*(-sqrt(2) + 2)^(3/
2) + x^2 + 3/64*(8*sqrt(2)*x*sqrt(sqrt(2) + 2) - (sqrt(2) + 2)^2)*(sqrt(2) - 2))
 - (sqrt(sqrt(2) + 2) + sqrt(-sqrt(2) + 2))*log(1/8*sqrt(2)*x*(sqrt(2) + 2)^(3/2
) + 1/64*(sqrt(2) + 2)^3 + 3/64*(sqrt(2) + 2)*(sqrt(2) - 2)^2 - 1/64*(sqrt(2) -
2)^3 - 3/8*sqrt(2)*x*(sqrt(2) + 2)*sqrt(-sqrt(2) + 2) + 1/8*sqrt(2)*x*(-sqrt(2)
+ 2)^(3/2) + x^2 + 3/64*(8*sqrt(2)*x*sqrt(sqrt(2) + 2) - (sqrt(2) + 2)^2)*(sqrt(
2) - 2)) + (sqrt(sqrt(2) + 2) + sqrt(-sqrt(2) + 2))*log(-1/8*sqrt(2)*x*(sqrt(2)
+ 2)^(3/2) + 1/64*(sqrt(2) + 2)^3 + 3/64*(sqrt(2) + 2)*(sqrt(2) - 2)^2 - 1/64*(s
qrt(2) - 2)^3 + 3/8*sqrt(2)*x*(sqrt(2) + 2)*sqrt(-sqrt(2) + 2) - 1/8*sqrt(2)*x*(
-sqrt(2) + 2)^(3/2) + x^2 - 3/64*(8*sqrt(2)*x*sqrt(sqrt(2) + 2) + (sqrt(2) + 2)^
2)*(sqrt(2) - 2)) + (sqrt(sqrt(2) + 2) - sqrt(-sqrt(2) + 2))*log(-1/8*sqrt(2)*x*
(sqrt(2) + 2)^(3/2) + 1/64*(sqrt(2) + 2)^3 + 3/64*(sqrt(2) + 2)*(sqrt(2) - 2)^2
- 1/64*(sqrt(2) - 2)^3 - 3/8*sqrt(2)*x*(sqrt(2) + 2)*sqrt(-sqrt(2) + 2) + 1/8*sq
rt(2)*x*(-sqrt(2) + 2)^(3/2) + x^2 - 3/64*(8*sqrt(2)*x*sqrt(sqrt(2) + 2) + (sqrt
(2) + 2)^2)*(sqrt(2) - 2)) - sqrt(2)*sqrt(-sqrt(2) + 2)*log(1/64*(sqrt(2) + 2)^3
 - 3/64*(sqrt(2) + 2)^2*(sqrt(2) - 2) + 3/64*(sqrt(2) + 2)*(sqrt(2) - 2)^2 - 1/6
4*(sqrt(2) - 2)^3 + 3/4*x*(sqrt(2) + 2)*sqrt(-sqrt(2) + 2) - 1/4*x*(-sqrt(2) + 2
)^(3/2) + x^2) + sqrt(2)*sqrt(-sqrt(2) + 2)*log(1/64*(sqrt(2) + 2)^3 - 3/64*(sqr
t(2) + 2)^2*(sqrt(2) - 2) + 3/64*(sqrt(2) + 2)*(sqrt(2) - 2)^2 - 1/64*(sqrt(2) -
 2)^3 - 3/4*x*(sqrt(2) + 2)*sqrt(-sqrt(2) + 2) + 1/4*x*(-sqrt(2) + 2)^(3/2) + x^
2) + sqrt(2)*sqrt(sqrt(2) + 2)*log(1/64*(sqrt(2) + 2)^3 + 3/64*(sqrt(2) + 2)*(sq
rt(2) - 2)^2 - 1/64*(sqrt(2) - 2)^3 + 1/4*x*(sqrt(2) + 2)^(3/2) + x^2 - 3/64*((s
qrt(2) + 2)^2 - 16*x*sqrt(sqrt(2) + 2))*(sqrt(2) - 2)) - sqrt(2)*sqrt(sqrt(2) +
2)*log(1/64*(sqrt(2) + 2)^3 + 3/64*(sqrt(2) + 2)*(sqrt(2) - 2)^2 - 1/64*(sqrt(2)
 - 2)^3 - 1/4*x*(sqrt(2) + 2)^(3/2) + x^2 - 3/64*((sqrt(2) + 2)^2 + 16*x*sqrt(sq
rt(2) + 2))*(sqrt(2) - 2)))

_______________________________________________________________________________________

Sympy [A]  time = 4.26652, size = 15, normalized size = 0.04 \[ \operatorname{RootSum}{\left (16777216 t^{8} + 1, \left ( t \mapsto t \log{\left (- 512 t^{3} + x \right )} \right )\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x**2/(x**8+1),x)

[Out]

RootSum(16777216*_t**8 + 1, Lambda(_t, _t*log(-512*_t**3 + x)))

_______________________________________________________________________________________

GIAC/XCAS [A]  time = 0.25497, size = 323, normalized size = 0.95 \[ -\frac{1}{8} \, \sqrt{-\sqrt{2} + 2} \arctan \left (\frac{2 \, x + \sqrt{-\sqrt{2} + 2}}{\sqrt{\sqrt{2} + 2}}\right ) - \frac{1}{8} \, \sqrt{-\sqrt{2} + 2} \arctan \left (\frac{2 \, x - \sqrt{-\sqrt{2} + 2}}{\sqrt{\sqrt{2} + 2}}\right ) + \frac{1}{8} \, \sqrt{\sqrt{2} + 2} \arctan \left (\frac{2 \, x + \sqrt{\sqrt{2} + 2}}{\sqrt{-\sqrt{2} + 2}}\right ) + \frac{1}{8} \, \sqrt{\sqrt{2} + 2} \arctan \left (\frac{2 \, x - \sqrt{\sqrt{2} + 2}}{\sqrt{-\sqrt{2} + 2}}\right ) + \frac{1}{16} \, \sqrt{-\sqrt{2} + 2}{\rm ln}\left (x^{2} + x \sqrt{\sqrt{2} + 2} + 1\right ) - \frac{1}{16} \, \sqrt{-\sqrt{2} + 2}{\rm ln}\left (x^{2} - x \sqrt{\sqrt{2} + 2} + 1\right ) - \frac{1}{16} \, \sqrt{\sqrt{2} + 2}{\rm ln}\left (x^{2} + x \sqrt{-\sqrt{2} + 2} + 1\right ) + \frac{1}{16} \, \sqrt{\sqrt{2} + 2}{\rm ln}\left (x^{2} - x \sqrt{-\sqrt{2} + 2} + 1\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(x^2/(x^8 + 1),x, algorithm="giac")

[Out]

-1/8*sqrt(-sqrt(2) + 2)*arctan((2*x + sqrt(-sqrt(2) + 2))/sqrt(sqrt(2) + 2)) - 1
/8*sqrt(-sqrt(2) + 2)*arctan((2*x - sqrt(-sqrt(2) + 2))/sqrt(sqrt(2) + 2)) + 1/8
*sqrt(sqrt(2) + 2)*arctan((2*x + sqrt(sqrt(2) + 2))/sqrt(-sqrt(2) + 2)) + 1/8*sq
rt(sqrt(2) + 2)*arctan((2*x - sqrt(sqrt(2) + 2))/sqrt(-sqrt(2) + 2)) + 1/16*sqrt
(-sqrt(2) + 2)*ln(x^2 + x*sqrt(sqrt(2) + 2) + 1) - 1/16*sqrt(-sqrt(2) + 2)*ln(x^
2 - x*sqrt(sqrt(2) + 2) + 1) - 1/16*sqrt(sqrt(2) + 2)*ln(x^2 + x*sqrt(-sqrt(2) +
 2) + 1) + 1/16*sqrt(sqrt(2) + 2)*ln(x^2 - x*sqrt(-sqrt(2) + 2) + 1)